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Bell-Type Inequalities in Orthomodular Lattices. 
I. Inequalities of Order 2 
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We study Bell-type inequalities of order n with emphasis on the case n = 2 in 
the framework of the structure of an orthomodular lattice, which is a 
logicoalgebraic model of quantum mechanics. We give necessary and sufficient 
conditions for the validity of Bell-type inequalities of order 2. In particular, we 
study Bell-type inequalities in various structures connected with a Hilbert space, 
and we give a characterization of Boolean algebras via the validity of certain 
Bell-type inequalities. 

1. INTRODUCTION 

The probability world of classical mechanics may be described in the 
framework of Boolean algebras as was done in the Kolmogorov (1933) 
axiomatic model. In contrast to this, quantum mechanics provides a more 
general structure than Boolean algebras. Bell (1964) gave an example of an 
inequality involving three probabilities 

p(a)  + p(b)  - p(a ^ b) <- 1 

which is valid in classical probability theory but violated by some quantum 
mechanical experiments. This observation started an intensive investigation 
of so-called Bell-type inequalities (Clauser et al., 1969; Santos, 1986, 1988; 
Beltrametti and Maczyfiski, 1991, 1992a, b, 1994; Pulmannov~i and Majernfk, 
1992; Pulmannovfi, 1994; L~ger  and Maczyfiski, n.d.). 

Today we use a logicoalgebraic approach to quantum mechanics (Birk- 
hoff and van Neumann, 1936; Varadarajan, 1968), where two essential postu- 
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lates are proposed: (i) to any physical system ~ an orthomodular lattice L 
(also called a quantum logic) is associated, and (ii) any preparation procedure 
of the physical system defines a state. 

By a Bell-type inequality of order n we understand any inequality of 
the type 

f(1)p(A a ; ) E  [0, 1] 
ICN \ i~ l  

which holds for a state p in an orthomodular lattice L (and for all ai . . . . .  
a,  E L), wheref(I )  is a real coefficient, P(^i~1 ai) is a correlation, or a joint 
distribution, of the set of events {ai: i e I} in the state p, ai . . . . .  a, E L, 
and N := {1 . . . . .  n}. 

A general approach using orthomodular lattices has been studied in 
Beltrametti and Maczyfiski (1994) and L~inger and Maczyfiski (n.d.), where 
it was shown that there exists an intimate connection between Bell-type 
inequalities of order n holding in any classical model on the one hand and 
inequalities of type 

f(1) E [0,1] for any K C _ N  
iCK 

on the other hand. 
This and a subsequent paper are devoted to the investigation of Bell- 

type inequalities within the framework of orthomodular lattices. In the first 
paper we study Bell-type inequalities of order 2. It turns out that the validity 
of as much as possible of such Bell-type inequalities is equivalent to the 
subadditivity of the corresponding state. 

The paper is organized as follows: The basic definitions and notions are 
given in Section 2, and the definitions of a correlation function and of a Bell- 
type inequality of order n follow in Section 3. Section 4 contains general 
criteria for validity of Bell-type inequalities of order 2. In Sections 5 and 6, 
Bell-type inequalities in various structures connected with Hilbert spaces and 
in some other orthomodular lattices are studied. The connection between 
Bell-type inequalities of order 2 and the distributivity of the corresponding 
lattices is exhibited in Section 7. 

We postpone a detailed study of Bell-type inequalities of order at least 
3 to the subsequent paper. 

2. BASIC DEFINITIONS AND NOTIONS 

We shall assume that the event structure of a quantum mechanical 
measurement is described by a quantum logic, or, equivalently, by an ortho- 
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modular  lattice (OML) L. So, let L be an OML,  i.e., L is a lattice with respect  
to a partial ordering - and with the greatest  and least e lements  1 and 0 
(0 4: 1), equipped with an orthocomplementat ion 1: L --+ L, a ~ a • a, a • 
E L, such that, for  all a, b ~ L: (i) a -L• = a; (ii) a v a I = 1; (iii) if  a --< 
b, then b I --< a•  (iv) if  a -< b, then b = a v (b /x  a ~) (orthomodular law). 
I f  an O M L  L is as a lattice (r-complete or complete ,  then we say that L is a 
( r -OML or a complete  OML,  respectively. For  more  details on O M L s  see 
Beran (1984), Ka lmbach  (1983), Pt~k and Pulmannov~i (1994), and Dorninger  
and MUller (1984) and on lattices Birkhoff  (1967). 

We say that two elements  a and b of  L are: (i) orthogonal, and write a 
• b, iff  a --- b J-; (ii) O-orthogonal if  a A b = 0; (iii) compatible, and write 
a ~ b, iff there are three mutual ly  or thogonal  e lements  a~, b~, c E L such 
t h a t a  = ai v c ,  b = bl v c .  T h e n a l  = a A b  •  = b A a  •  = a A b .  
It is possible  to show that a ~ b i f f a  = a A b v a A b • (Kalmbach,  1983). 3 

A subset  L0 of  L containing 0 and 1 is said to be a sub-OML of  the 
O M L  L if a ~ Lo implies a x e Lo, and if  a, b ~ L0 implies  a v b e Lo, 
where the jo ins  taken in L0 and L are the same.  I f  M is a subset o f  L, then 
there exists a smallest  sub -OML of  L, denoted by  Lo(M), containing M; 
indeed, Lo(M) = A{L0 C L: L0 D M, Lo is a sub -OML of  L}; it is called 
the s u b - O M L  of  L generated by M. I f  a s u b - O M L  L0 of  L is distributive, 
i.e., if  for  all a, b, c ~ L0 we have 

( a v b ) ^ c = a A c v b A c  (2.1) 

or 

( a / x b )  v c =  (a v c) ^ (b v c) (2.2) 

then we call it a Boolean subalgebra of  L. 
The  center  o f  L is the set C(L) = {a e L: a *-, b for  all b e L}. It is 

clear that 0, i ~ C(L), and if a e C(L), then a" e C(L). In addition, C(L) 
is a Boolean subalgebra  of  L. Moreover ,  an O M L  L is a Boolean algebra iff  
L = C(L). An O M L  L is said to be irreducible iff  C(L) = {0, 1 }. 

I f  the event  structure L of  a physical  sys tem ~ is a Boolean algebra,  
we say that ~ is a classical system, and if  L is not a Boolean algebra, we  
say that ~ is not a classical system. I f  the event  structure of  a subsys tem ~0 
of  the physical  sys tem ~ forms a Boolean subalgebra  Lo of  L, we say that 
9o  is locally classical in ~ .  

For  any pair  a, b e L, we define the commutator,  corn(a, b), of  a, b via 

c o m ( a , b )  = a A b v a A b =  v a  I A b v a  •  • (2.3) 

Then a ,-. b iff  com(a,  b) = 1. It is clear that if  a _L b, then a ^ b = 0; 
the converse  implicat ion holds in any Boolean  algebra. We recall that by 

3We note that ^ has a higher priority than v. 
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Varadarajan (1968), Lo(M) is a Boolean subalgebra  of  L iff a *-* b for all a, 
b ~ M .  

One of  the most  important  models  of  quantum logic theory is the sys tem 
L(H) of  all closed subspaces of  a real or complex  Hilbert  space H (not 
necessari ly separable),  where  the partial ordering -< is the set-theoretic inclu- 
sion, with the or thocomplementa t ion  _L: M ~ M i :=  {x E H: (x, y) = 0 
for all y ~ M }, and with the null subspace {0 } and the whole  space H as 
the least and greatest  elements.  L(H) then forms a comple te  OML.  

A mapping  p: L --+ [0, ~ )  is said to be: 

(i) subadditive if  p(a v b) <- p(a) + p(b), for  all a,  b ~ L; 
(ii) a valuation if  p(a v b) + p(a A b) = p(a) + p(b), for  all a, b 

L; 
(iii) O-additive if  p(a v b) = p(a) + p(b) whenever  a A b = 0; 
(iv) additive if  p(a v b) = p(a) + p(b) whenever  a _1_ b; 
(v) or-additive if, for  {ai}i~=t with ai J_ aj, i --/= j, such that v ~ i= l  ai E 

V ~ L, we  have  p(  i=t ai) = ~i=1 p(a/);  
(vi) completely additive if, for  any index set I and any sys tem { ai}i~t 

with ai _l_ aj for  i r j ,  i, j ~ L and v / d  ai ~ L, we have 4 

p(vi~l ai) = ~ i ~ l  p(ai); 
(vii) a state i f p  is additive and p(1)  = 1; 

(viii) distributive if  p((a v b) A C) = p(a A C V b A C) for  all a, b, c 
L; 

(ix) modular i f p ( ( a v b )  A c ) )  = p(a v (b A c)) for all a, b , c  e L 
with a <- c; 

(x) positive i f p ( a )  > 0 whenever  a e L\{0}; 
(xi) Jauch-Piron if  p(a v b) = 0 whenever  p(a) = p(b) = 0; 

(xii) O-l-valued i f p ( L )  = {0, 1}. 

We denote by S(L) the set o f  all states on L. We say that a sys tem 
of  states on an O M L  L is: (1) separating if  p (a )  = 0 for  a l l p  e ~ implies 
a = 0; (ii) ordering if p(a) <-- p(b) for all p ~ ~ implies a --< b; (iii) unital 
if given a :~ 0, there exists a state p E @ such that p(a) = 1; (iv) full if 
p(a) = p(b) for all p e ~ implies  a = b. We note that any unital sys tem 
is separating. 

I f  L is a Boolean algebra, then any state is 0-additive, subadditive,  and 
a valuation. I f  L is not a Boolean algebra, there m a y  exist states which are 
not subadditive. Since subaddit ive states will play an important  role in a 
discussion of  Bel l - type inequalities, (see Sections 4 and 5), we  give also a 
deeper  analysis o f  this notion. 

4~i~  I p(al): = sup{E/~j p(al): J is a finite subset of 1}. 
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Example 2.1. Let L be given by Fig. 1 (this OML is denoted by MO2 
and called the Chinese lantern). Every state p on L is of  the following form: 
p(O) = O, p(a) = oL, p(a l )  = 1 - eL, p(b) = 13, p(b • = 1 - 13, and p(1) = 
1, where c~, 13 ~ [0, 1]. Such a p  is subadditive iffoL = 13 = 1/2 (see 
Proposition 6.1 or 6.6). 

Example 2.2. Let L = L(H), dim H --- 2, and put 

p(M) := Xlle~x~ll  z + (1 - X)IIPMx2112, M E L(H) 

where 1/2 < X ----- 1, xl and x2 are two orthonormal vectors in H, and PM is 
the orthogonal projection from H onto M. Put x~ := ,/-2/2(xl + x2) and x~ 
"= x2. Then xl and x~ are linearly independent vectors and they generate a 
two-dimensional subspace H0 of H. If  My denotes the one-dimensional sub- 
space of H generated by a nonzero vector y ~ H, we have 

1 = p(Ho) > P(Mx'I) + P(Mx'2) = (3 - 2X)/2 

so that p is a state which is not subadditive. 

Example 2.3. I f  L = L(H), 1 --< dim H = n < 0% then p: L(H) --> 
[0, I ], defined by 

p(M) = dim M/n, M E L(H) (2.4) 

is a subadditive state on L(H). 

3. C O R R E L A T I O N  F U N C T I O N S  AND B E L L - T Y P E  
I N E Q U A L I T I E S  

According to Beltrametti and Maczyfiski (1994) and L~inger and Maczyfi- 
ski (n.d.), we introduce a correlation function which will be a crucial notion 
in our considerations of Bell-type inequalities. 

1 

0 
Fig. 1. 
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Let N := {1 . . . . .  n} for a fixed integer n >-- 1. We put ^iE~ ai := 1 
in any OML L. 

Proposition 3.1. Let f :  2 N ~ R and le tp  be a state on an OML L. Then 
the property 

implies 

~ f ( l )p(A ai) ~ [0, 1] 
IC_N \iEI 

for any al . . . . .  an E L (3.1) 

f(I) ~ [0, 1] for any K C N (3.2) 
IC_K 

Proof Let K C_ N be given. Put ai := 1 if i ~ K and ai := 0 if i 
N\K. Then 

[0, 119  ~ f ( l )p(A all = ~ f(l)p(m) = ~ f(I) �9 
IC_N \ i e l  ] IC_K ICK 

Proposition 3.2. Let f :  2 N --~ ~, and l e tp  be a state on an OML L. Then 
the statement 

f ( l )p(A ait E [0, 1] for any a, . . . . .  an ~ {0,1} X 
IC_N \ i~l  / 

is equivalent to (3.2). 

Proof This follows ideas of the proof of Proposition 3.1. �9 

Corollary 3.3. Propositions 3.1 and 3.2 also hold if f :  2 N ~ Z, where 
Z is the set of all integers. 

Proof. This is a particular case of Propositions 3.1 and 3.2. �9 

Beltrametti and Maczyfiski (1994) and L~tnger and Maczyfiski (n.d.) 
proved a slightly modified version of the following result: 

Theorem 3.4. The statements (3.1) and (3.2) are equivalent for any state 
p on a Boolean algebra L. 

The formula in (3.1) defines a correlation function of order n, S~, (with 
respect to a state p and a function f :  2 u ----) ]~), i.e., $7: L n --+ R such that 

Sf(al . . . . .  an)=l~Nf(I)P(~lai) for any al . . . . .  anEL 

In other words, S~ is a linear combination of p(Aial ai), and p(Ai~z ai) can 
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be represented as a joint probability of ai (i e I) in the state p. The for- 
mal expression 

is said to be a Bell-type inequality o f  order n. In view of Proposition 3.1, 
throughout the paper and its continuation, we shall understand by a Bell- 
type inequality only such an expression of the form (3.3), when f satisfies 
(3.2). We say that the Bell-type inequality (3.3) holds in an OML L and for 
a state p if it is true for all al . . . . .  an E L. The inequality (3.3) generalizes 
the original inequality of Bell (1964), 

p(a) + p(b) - p(a ^ b) <- 1 

when in (3.3) we put N = {1, 2} , f (O)  = 0,f({1}) = f({2}) = - f ({1 ,  2}) 
= 1. 

Theorem 3.4 provides a very simple method of verification of Bell-type 
inequalities (Beltrametti and Maczyfiski, 1994): We take a function f :  2N ---~ 
R and we investigate whether it satisfies (3.2). Because N has n elements, 
this means we examine 2 n inequalities: If all sums occurring in (3.2) lie in 
the interval [0, 1], then the Bell inequality (3.3) holds in any classical model; 
in the opposite case we reject the inequality as not valid in any Kolmogorov 
probability model, and, in addition, in view of Propositions 3.1 and 3.2, also 
not valid in any OML. In the first case, this Bell-type inequality can be used 
as a test for a given system of events in order to see if it comes from a 
classical or nonclassical physical system. 

In physical praxis, f o r f w e  take a function wi thf ( l )  = 0 whenever ^i~l 
as is not physically measurable. The verification procedure simplifies when 
we consider a function f with integer values, in particular, when f :  2 N 
{ -  1, 0, 1}. In general, for large values of n, some computational problems 
can appear (Pitowsky, 1989), but as we shall see, the most important cases 
a ren  = 2 a n d n =  3. 

In view of Proposition 3.1, we see that it can happen that the conformation 
of the inequality (3.1) does not necessarily imply the classicality of the 
corresponding physical system; as remarked in Pulmannov~i and MajernN 
(1992), there are nonclassical systems with Bell-type inequalities (3.3) satis- 
fying (3.2). 

In addition, if, for example, a and b are not compatible, so that a ^ b 
is not commensurable, the values p(a /x b) can also have a probabilistic 
interpretation in the analysis of nonclassical systems, i.e. (for more details 
see the end of Section 8) 

p(a A b) + p(a A b l )  + p(a z A b) + p(a • /~ b • = 1 
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Therefore in what follows we shall concentrate on finer questions con- 
cerning the validity of Bell-type inequalities of type (3.3) in nonclassical 
models and with their interpretation, and we give a more detailed characteriza- 
tion of OMLs satisfying special types of Bell-type inequalities. 

4. BELL-TYPE INEQUALITIES OF ORDER 2 

The basic Bell (1964) inequality can be described in OMLs as follows: 

p(a) + p(b) - p(a ^ b) <- 1, a, b E L (4.1) 

This type, which is a particular form of (3.3), has been intensively studied 
in, e.g., Santos (1986, 1988), Pitowsky (1989), Beltrametti and Maczyfiski 
(1992a,b, 1994), and Pulmannov~i and Majern~ (1992). 

In the present section, we show that (4.1) holds in any OML for any 
subadditive or 0-additive state. We give some equivalent criteria for the 
validity of the Bell-type inequality (4.1) in OMLs. 

Santos introduced the separation (Santos, 1986) or the distance (Santos, 
1988) Sp(a, b) between two propositions a, b in the state p via 

Sp(a, b) = p(a) + p(b) - 2p(a ^ b), a, b E L (4.2) 

He proved that if L is a Boolean algebra, then Sp is a pseudometric on L. 5 
For any two elements a and b in L, we define 

a A b : =  ( a v b )  A ( a A b )  l 

and if p is a state on L we put 

pp(a, b) := p(aAb), a, b ~ L (4.3) 

Theorem 4.1. Letp be a state on an OML L. Then the following statements 
are equivalent: 

(i) 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 
(vii) 

(viii) 

p(a) + p(b) - p(a ^ b) -< 1 for all a, b E L (Bell inequality). 
p is subadditive. 
p is a valuation. 
p is 0-additive. 
pp is a pseudometric on L. 
Sp is a pseudometric on L. 
Sp = pp. 
For every f :  2 II,zl ~ R (f:  2/l'2/ ~ Z) with 

SA mapp ing  S: L • L --> [0, co) is said to be a pseudometric on  L if, for all a,  b, c ~ L, (i) 
S(a, a) = 0, (ii) S(a, b) = S(b, a), (iii) S(a, b) <~ S(a, c) + S(c, b) (triangle inequality). 
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IC{ 1,2} 
f o r a n y  al, a2 ~ {0, 1} 

1003 

we have 

f ( l ) p ( A  a / ) ~  [0, 1] 
1C_{1,2} \iEl 

for any al, a2 E L  

(ix) For every f :  21~'21 --~ R ( f :  2 I~'2/ -+  Z) with 

f (1)  ~ [0, 1] for any K C  {1,2} 
IC_K 

we have 

f(I)p(~l\ ail E [ O , /  1] for any al, o2 ~ L 
ICt 1,2} 

(x) There are a modular  O M L  M, a homomorph i sm h f rom L onto 
M, and a (positive) subadditive state P on M such that P(h(a)) 
= p(a) for any a ~ L. 

(xi) There exists an ~x > 0 such that 1 - eL + e~p(a) + c~p(b) - 
e~p(a ^ b) --< 1 for all a, b E L. 

(xii) There exists an oL < 0 such that 0 -< -c~ + c~p(a) + e~p(b) - 
~xp(a ^ b) for all a, b ~ L. 

(xiii) 0 <- p(b) - p(c) - p(a ^ b) - p(b A c) -- p(c A d) + p(a ^ 
d)  for all a, b, c, d ~ L. 6 

Proof  The equivalence o f  (i)-(iii),  (vi), (vii), and (xiii) has been proved 
in Pulmannov~i and M a j e m ~  (1992). N o w  let a, b, c ~ L. 

(iii) ~ (iv). This is evident. 
(iv) ~ (iii). Since a ,-. (a ^ b) l ~ b, due to the Fou l i s -Hol land  

theorem 7 (Kalmbach, 1983; Pt~k and Pulmannov~i, 1991), (a v b) ^ (a ^ b) • 
= a ^ ( a A b )  • v b A ( a A b )  l .  On the other hand, [ a A ( a A b )  • A [ b A  
(a A b) • = 0, which implies 

p(a v b) - p(a A b) 

= p((a v b) A (a A b) • 

6This inequality is a Clauser-Home-type inequality. 
VFoulis-Holland theorem: If, for three elements x, y, z ~ L, we have x .-. y ~ z, then the 
sublattice of L generated by {x, y, z} is distributive. 
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= p ( a A ( a A b )  l )  + p ( b ^ ( a ^ b )  • 

= p(a) - p(a  ^ b) + p(b) - p(a ^ b) 

Hence, p(a v b) + p(a ^ b) = p(a) + p(b).  
(ii) ~ (v). According to Sarymsakov et al. 0983) ,  the following inequal- 

ity holds: 

aAb <- (aAc) v (bAc) (4.4) 

Using the subadditivity of p and (4.4), we obtain (v). 
(v) ~ (iii). From the triangle inequality for pp we conclude 

pc(a, b) <-- pt,(a, a v b) + pp(a v b, b) 

p(a v b) - p(a  A b) < p(a v b) - p(a)  + p(a v b) - p(b)  

p(a) + p(b)  <-- p(a v b) + p(a A b) 

The last inequality also holds when we change a and b to a • and b • 
respectively, so that 

p(a • + p(b • <- p(a • v b • + p(a • ^ b • 

p(a) + p(b) >- p(a v b) + p(a A b) 

which implies that p is a valuation. 
(viii) r (ix). This equivalence follows from Proposition 3.2. 
(i) ~ (ix). Let f :  2 ll'2} --4 R (f: 211'2} --9 Z) satisfy (3.2) for n = 2. 

Define A = f (O) ,  B = f({ 1 }), C = f({2}),  and O = f({ 1, 2}). Then (3.2) 
implies the following four inequalities: 

0 < _ A _ < I  

0 _ < A + B _ < I  

0 _ A + C _ < I  

O < _ A + B + C + D < _ I  

Multiplying the above inequalities successively by the nonnegative numbers 
1 - p(a) - p(b) + p(a A b), p(a) - p(a  ^ b), p(b) - p(a  ^ b), and 
p(a A b), and summing all terms, we obtain 

O <-- A + Bp(a) + Cp(b) + Dp(a A b) <-- 1 

(ix) ~ (i). This follows easily using the functionfwithf(Q~) = 0,f({ 1 }) 
= f ( { 2 } )  = - f ({1 ,  2}) = 1. 

(ii) ~ (x). It is not hard to show that 
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p((a v c ) A ( b  v c)) + p((a A c )A(b  ^ c))  --< p(aAb)  (4.5)  

W e  wr i t e  a - -  b i f  pp(a, b) = 0. F r o m  (v) a n d  (4.5)  w e  c o n c l u d e  tha t  
is a c o n g r u e n c e  on L, i.e.,  an e q u i v a l e n c e  r e l a t i on  on  L such  that  i f  a i  - 

bi, i = 1, 2, then al  v a 2 ~ b~ v b 2 ,  a t A a 2 ~ b I A b2, and  ai  • ~ b/t ,  i = 
1, 2. F o r  any  a e L pu t  [a] : =  {b E L: b - -  a} and  le t  M : =  LI- - :=  {[a]:  
a e L}.  T h e n  M is an O M L  wi th  the l eas t  and  g rea t e s t  e l e m e n t s  [0] and  [1]~ 
the o r t h o c o m p l e m e n t a t i o n  [a] • : =  [a-L], the j o i n  [a] v [b] = [ a v  b],  and  

the  m e e t  [a]  A [b] = [a  ^ hi .  
I f  a --< b, then  [a] = [b] i f f p ( a )  = p(b).  N o w  a s s u m e  [a] --< [c]. Pu t  cl  

"=  a v c. T h e n  [c] = [cl]  and  a --< Cl. S i n c e  p is m o d u l a r  and  a v (b A Cl) 
--< (a  v b)  ^ Cl, w e  have  

( [a]  v [b])  ^ [c]) = ([a]  v [b])  A [Cl] = [(a v b) ^ Cl] 

= [a v (b A cl)]  = [a] v ([b] A [Cl]) = [a] v ([b] A [C]) 

w h i c h  p r o v e s  m o d u l a r i t y  o f  M.  
T h e  c a n o n i c a l  m a p p i n g  h: L ---> M,  d e f i n e d  v i a  a ~ [a] ,  a E L, is a 

h o m o m o r p h i s m  f r o m  L on to  M. 
W e  de f ine  a m a p p i n g  P :  M --~ [0, 1] b y  P ( [ a ] )  = p ( a ) ,  a ~ L. S i n c e  

pe(a, b) = 0 i m p l i e s  0 -< p(a ^ (a A b)• 

p ( b A ( a A b )  •  1) = 0 

and  h e n c e  

p ( a ) = p ( a A ( a A b )  • + p ( a A b )  
-- p(a A b) = p(a A b) 
= p(b A (a A b) • + p(a A b) = p(b) 

w e  see tha t  P is we l l  de f ined .  
I f  [a] • [b], then  p(a) = p(a ^ b:-) and  p(b) = p(a • ^ b) and  h e n c e  

p(a v b) >- p((a A b • v (a • A b)) 
= p(a  ^ b • + p(a l a b )  

= p(a) + p(b) 
>-- p(a v b) 

w h i c h  s h o w s  that  P ( [ a ]  v [b]) = P ( [ a ] )  + P( [b ] ) .  The re fo re ,  P is a s u b a d d i t i v e  
s ta te  on  M.  In add i t ion ,  P ( [ a ] )  = 0 iff  p(a) = 0, w h i c h  is e q u i v a l e n t  to  [a] 

= [01. 
(x) ~ (ii).  Th i s  is ev iden t .  
(xi)  r (i). 1 - R + Rp(a) + c~p(b) - oLp(a A b) --< 1 i f f  offp(a) + 

p(b) - p(a  A b)) <-- et. 
(xi i )  r (i).  0 <-- - e ~  + etp(a) + etp(b) - ecp(a A b) i f f  oL(p(a) + p(b) 

- - p ( a A b ) )  >-- ~. [] 
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In Pulmannowi and M a j e m ~  (1992) and Ptfik and Pulmannovfi (1994) 
it is shown that if the Bell inequality (4.1) holds for any p from an ordering 
or unital system ~P of states on L, then L is a Boolean algebra. 

Now we present an example of an OML not a Boolean algebra in which 
the Bell inequality (4.1) holds for any state on it. 

Example 4.2. There exists a non-Boolean OML L with the nonempty 
system of all states such that any Bell-type inequality of  order 2 satisfying 
(3.2) holds for any state on L. 

Proof Let L be the OML from Proposition 2.4.10 in Pt~k and Pulman- 
nov~t (1991), i.e., L = Lj • L2, where L~ is a stateless OML, L2 = {0, 1 }, 
and L1 X /-a is the product OML of L1 and L2. 8 

Then L is a non-Boolean OML and on L there exists a unique state p, 
namely p(a, 0) = 0 and p(a, 1) = 1 for any a ~ L1. An easy calculation 
shows that p is subadditive. �9 

It is well known that p defined via (2.4) is a subadditive state on L(H) 
for a finite-dimensional Hilbert space H. This OML is not a Boolean algebra 
whenever dim H > 1; we recall that it is an important model for so-called 
finite-dimensional quantum mechanics (Busch et al., 1993). In view of the 
equivalence of (ii) and (viii) in Theorem 4.1, we see that if p is a priori a 
subadditive state, then there is no Bell-type inequality, equivalently, no test 
using only pairs of  propositions a and b which can decide whether the system 
under testing is classical or nonclassical. 

Or it follows that the confirmation of any Bell-type inequality with N 
= { 1, 2 } does not imply the classicality of  the system. 

In the following section, we shall deal in a more detailed way with 
subadditive states on L(H). 

Proposition 4.3. Let p be a state on an OML L, and let f :  2 {~,2} ~ R 
be a nonzero function. For the statements 

(i) p is subadditive; 
(ii) the mapping S]: L 2 ~ R, defined by 

S~(a, b) := f ( O )  + f({ 1 })p(a) + f({2})p(b) 
+ f({ 1, 2})p(a ^ b), a, b E L 

is a pseudometric on L; 
(iii) f ( Q )  = 0 and f({1}) = f ( { 2 } )  = - f ( { 1 ,  2})/2 > O; 

we have (ii) ~ (iii) and (ii) ~ (i). 

8Let (Li, ~i, Oi, li, • be a system of OMLs. Then L = [IiEIL i is an OML, where {ai} i <--- 
{bi}i iff al ~i bi for any i ~ I, and {ai}~: = {a{ }i with the least and greatest elements 0 = 
{ 0i}i and 1 = { li}i, respectively. L is said to be theproduct OML of the system of OMLs {L~}i~t. 
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Proof. (ii) ~ (iii). This follows f rom 0 = S~(I ,  1) = Sf(0,  0) = f ( • ) ,  
and f rom S~ (1, 0) = Sf  (0, 1) :> 0. 

(ii) ~ (i). Let  a, b ~ L and put a : =  f ({1}) .  Then Sf (a ,  b) = oLp(a) 
+ ap(b)  -2c~p(a a b). In view of  (ii), S f (a ,  b) <- S,r a v b) + SPf(a v 
b, b), which gives 

ap(a)  + c~p(b) - 2oLp(a ^ b) 

<-- ap(a)  + c~p(a v b) - 2ap(a)  + ap(a  v b) + ap(b)  - 2ap(b)  

2ap(a)  + 2ap(b)  --- 2oLp(a v b) + 2ap(a  A b) (4.6) 

Changing a and b in (4.6) to a • and b • respectively, we finally obtain p(a)  
+ p(b) = p(a v b) + p(a A b) for all a, b ~ L, which is equivalent to the 
subadditivity of  p. [] 

5. BELL-TYPE INEQUALITIES OF ORDER 2 IN 
HILBERT SPACES 

Let p be a state on an OML  L. We say that an element ao ~ L is a 
support  of  p if  p(b) = 0 for some b ~ L iff b • ao. It is easy to show that 
if a support of  p exists, it is unique: 

ao = A { a  ~ L: p(a)  = 1} 

and p(ao) = 1. 

Proposit ion 5.1. If  a0 is the support o f  a subadditive state on an O M L  
L, then ao ~ C(L). 

Proof. Let a be an arbitrary element o f  L. Using the valuation property 
o f  p,  we have 

1 > - - p ( a o A a v a o A a  1) 

= p(ao A a) + p(ao A a • 

= p(ao) + p(a) -- p(ao v a) + p(ao) + p(a l )  -- p(ao v a z) 

= 3 - - p ( a o v a ) - - p ( a o v a  •  1 

Therefore, p(ao A a v ao A a • = 1. Since ao A a v ao A a z --< ao and since 
ao is the support o f  p, we conclude that ao A a v ao A a • = ao. Since a was 
an arbitrary element o f  L, this implies ao ~ C(L). [] 

It is well known that if H is a finite-dimensional Hilbert space, 1 --< 
dim H = n, then p defined via (2.4) is a subadditive state on L(H). We show 
that any subadditive state on L(H), 1 -< dim H < ~,  has the form (2.4). It 
is worth saying that we do not have to use the Gleason theorem, which holds 
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only for L(H) with dim H ----- 3. We recall that if  x is a nonzero vector in H, 
then/fix denotes the one-dimensional subspace of H generated by x. 

Proposition 5.2. Let 1 --< dim H = n  < ~. Then we have: 

(i) Any subadditive state on L(H) has a support. 
(ii) The support of a subadditive state on L(H) is equal to H. 

(iii) Any subadditive state p on L(H) is of  the form (2.4). 

Proof (i) Let p be a subadditive state on L(H) and put Lp l := {M 
L(H): p(M) = 1 }. Then L~ :~ O. Let M0 := A{M: M ~ LI}. It is clear that 
Mo E L(H). Since the dimension of  H is finite, there are finitely many 
elements M1 . . . . .  Mk of Lp I such that Mo = A~=l Mi. Then p(M~) = 
p(v~=l M { )  --< ~=lp(M~-) = 0, which proves that M0 is the support o f p .  

(ii) It is well known that for any H, L(H) is irreducible. 9 Since for the 
support M0 of p we have p(Mo) = 1, Proposition 5.1 implies M0 = H. 

(iiia) I f  dim H = 1, then the assertion (iii) is trivial. So assume dim H 
= 2. We claim that, for any unit vector x ~ H, p(Mx) = 1/2. I f  not, we can 
find such an Mx such that p(Mx) < 1/2 (or we choose M~).  It is easy to find 
a unit vector y ~ H\(Mx U M~) such that p(My) <-- 1/2. Then p(Mx v My) 
= p(H) = 1 > p(Mx) + p(My), which contradicts the subadditivity of  p. 
Hence, p is of  the form (2.4). 

(iiib) Let 3 --< dim H = n < oo. We assert that, for all unit vectors x 
and y in H, we have p(Mx) = p(My). Indeed, i f x  and y are linearly dependent, 
then Mx = My, so that P(Mx) = p(My). I f  x and y are linearly independent, 
they generate a two-dimensional subspace H0 of  H. The mapping Po on L(Ho), 
defined via 

po(M) := p(M)/p(Ho), M ~ L(Ho) 

is a subadditive state on L(Ho) [we note that p(Ho) > 0 in view of (ii)]. 
According to part (iiia), po(Mx) = po(My), which gives p(Mx) = p(My). 

Choose an orthonormal basis {xi}~=l in H; then 1 = p(H) = ~in=l 

p(M~i ) = np(Mx), which gives p(M~) = 1/n for any unit vector x e H; 
consequently, p has the form (2.4). �9 

Proposition 5.3. Let dim H = o~. Then we have: 

(i) I f  p is a subadditive state on L(H), then p(M) = 0 for any finite- 
dimensional subspace M of H. 

(ii) There is no subadditive, completely additive state on L(H). 

Proof (i) Let p be a subadditive state on L(H). Assume p(Mo) > 0 for 
some finite-dimensional subspace M0 of H. For two given linearly independent 

9For example, for M E L(H), {0} 4: M 4: H, choose a unit vector x e H \ (M U M• Then 
M~:> M~AMv M~AM 1 = {0}. 
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unit vectors x and y, define H0 = 540 v sp(x, y).10 Applying Proposition 5.2 
to the subadditive state P0 on L(Ho), defined via po(M) := p(M)/p(Ho),  M 
L(Ho), we conclude that p(Mx) = p(My). Put h := p(Mx), and choose a 
countable, infinite orthonormal system {xi}iZ1 in H. L e t / 4 ,  = sp(xl . . . . .  
x,). Then 

p ( H )  >--p(H,) = nh 

for any n --> 1. Hence, k = 0; consequently, p ( M )  = 0 for any finite- 
dimensional subspace M of H. 

(ii) Assume there exists some a subadditive, completely additive state 
p on L(H).  Choose an ONB {xi} in H. In view of (i), 1 = p ( H )  = 
P(Vi  Mxi) = ~'i p(Mxi) = 0, which is a contradiction. [] 

We recall that in Sarymsakov et al. (1983, p. 62), using the method of 
uniformities on quantum logics, it has been proved that on L(H) ,  dim H = 
~0, there is no separating system of subadditive, completely additive states. 

We note that due to Aarnes (1970; Dvure~enskij, 1993), any finitely 
additive measure on L ( H )  can be uniquely expressed as the sum 

P = Pl + P2 (5.1) 

where Pl is a completely additive measure on L ( H )  and P2 is a finitely additive 
measure on L ( H )  vanishing on any finite-dimensional subspace of H. In 
addition, if dim H = ~, then by Alda (1980), there is no 0-1-valued state 
on L(H).  

For a generalization of Proposition 5.3, see Proposition 6.8. 
The result of  Proposition 5.2 can be generalized as follows. Let S(H)  

denote the set of all skew operators on H, i.e., of  all linear operators P: H 
--r H such that pz = p. Then any idempotent operator is continuous (Dunford 
and Schwartz, 1957) and S(H)  contains as a subset the set ~ ( H )  of all 
orthogonal projections on H, i.e., of  all Hermitian idempotents on H. 

P u t E : = R a n P =  {Px: x ~ H} = {x E H: x = Px} E L ( H )  and F := 
KerP = {x ~ H : P x  = 0} ~ L ( H ) . T h e n E N  F =  {0} a n d E +  F =  H, 
and P projects any vector x ~ H onto E parallel with F. This relationship 
among P, E, and F will be written as P = ,rr(E, F). If, for E, F E L ( H )  we 
have E n F = {0} and E + F = H, then E, F determine a unique skew 
operator P = "rr(E, F) ~ S(H).  Indeed, we put Px = xl, x ~ H, whenever x 
= x t q- x2, x 1 E E, x2 ~ F. 

We have I - -rr(E, F)  = 7r(F, E)  and ~r*(E, F)  = w(F • E l ) ,  where I 
is the identity operator on H. 

~~ every subset M of a vector space V, let spM denote the linear subspaces of V generated 
by M. 
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We endow S(H)  with internal structures: For  P, Q ~ S(H), we write P 
-< Q iff PQ = QP = P, and P• : =  I - P. Then S(H)  is an OMP 11'12 with 
respect to --< and • defined above, and, in addition, if P _1_ Q, i.e., P -< Q• 
or equivalently P Q  = Q P  = O, where O is the null operator on H, then 
P v Q = P + Q. We recall that rr(El, FI)  --< 'rr(E2, F2) iff E1 C E2 and F2 
C_ F1. 

It is possible to show that if dim H --< 2, then S(H)  is an OML. I f  dim 
H --> 3, then S(H)  is not an OML. This follows f rom the fol lowing statement: If  

,if(El, FI)  v 'rr(E2, F2) = -rr(E, F )  (5.2) 

and w(E, F )  4= I, then El v E2 = E and F = F1 f3 F2 ]here v is taken in 
L(H)];  conversely, if E = E1 v E2, F = FI f? F2, E 71 F = {0}, and 
E + F = H, then (5.2) holds. [For a more general statement see Mushtari 
(1989).] 

Indeed, it is clear that E0 : =  El v E2 C E and F1 f-I F2 _D F. If, for 
example, Eo 4= E, there exists a unit vector x in E orthogonal  to E0. Choose  
a Hamel  basis {xi: i E I } o f  E containing the vector x = xi o such that {xi: i 
E I } \ {x}  is a Hamel  basis o f E  A M~ and a Hamel  basis { y j : j  E J }  o f F .  

Take a vector Yso, Jo E J, and put 

/~ = sp({xi: i ~ I\{i0}} tO {Xio -- YJ0}) 

Then /~ fq F = {0}, /~ + F = H, and 7r(/~, F )  dominates 'rr(El, Fj)  and 
~r(E2, F2), but w(/~, F )  and ~r(E, F )  are not comparable,  which contradicts 
(5.2), and hence E0 = E. Since P* --< Q* iff P -< Q, changing w to xr* in 
(5.2), we obtain FI fq F2 = F. 

It is worth saying that if 7r(E1, FI)  • 'rr(E2, F2), then 

7r(E1, El) v "rr(E2, F2) = "rr(El, F1) + ~(E2, F2) = 7r(El + E2, El 71 F2) 

(5.3) 
Indeed, we have El + E2 C_ E, F1 f) F2 _D F, where w(E, F )  is that f rom 
(5.2). I f  x ~ E, then 

x = xr(E, F ) x  = 7r(El, FOx + 7r(Ez, F2)x ~ El + E2 

Choose a skew operator P e S (H)  and define 

A = P ' P +  ( I - P ) * ( I -  P) (5.4) 

H An orthomodular poset (OMP) is a poset L with a partial ordering ---, least and greatest 
elements 0 and 1, and orthocomplementation • L ---> L such that for all a, b a L we have 
(i) a •177 =a,(i i)  i fa-<b,  thenb •  • i fa-- -b  •  ~L,(iv) ifa--<b, then 
b = a v a  • 

12A nonnegative mapping p on an OMP L is said to be (i) a state if p(1) = 1, and, if 
p(a v b) = p(a) + p(b) whenever a L b, (ii) subadditive ifp(a v b) <- p(a) + p(b) whenever 
a v b exists in L. 
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Then A is a Hermitian, positive invertible operator on H [A -I = PRa, eP* 
+ PKer p(I - P*)] and it defines on H a new inner product (- ,  �9 )A via 

(X, Y)A : =  (Ax, y), x, y e H 

Then H with respect to ( . ,  �9 )A is again a Hilbert space, and the topologies 
induced by I1" J[ and I1" ][A a r e  the same. 

Let ~A(H) denote the set of all orthogonal projections on H with respect 
to ( . ,  ")a. We note that 9~(H) = ~1(H). Then 

S ( H )  = [..J ~A(H) 
A 

where A is defined via (5.4), or S(H) = tOA ~bA (H), where A is any positive 
invertible operator on H. In addition, P E ~A(H) r AP = P* A r P* e 
!ff~a-I(H). 

Proposition 5.4. Let 1 ----- dim H = n < ~. Then on S(H) there is a 
unique state, which is subadditive on any ~I~A(H), namely p: S(H) ~ [0, 1], 
defined via 

p(ar(E, F)) := dim E/n, P = "rr(E, F) ~ S(H) (5.5) 

Proof. Define p on S(H) via (5.5). Since P1 = "rr(EI, Fl) • P2 = 'rr(E2, 
F2) iffE1 C F2 and Ez C Fl, we have E1 71 E2 C El A Fl = {0}. According 
to (5.3), we have 

P(PI v P2) = dim(E1 v E2)/n = dim El/n + dim Ez/n = P(PO + P(P2) 

Finally, p(l)  = p(Tr(H, {0})) = 1, which proves that (5.5) defines a state 
on S(H). 

We assert that if PI, P2 E ~'a (H), then Pl VA P2 exists in ~A(H) IrA 
denotes the join taken in ~a(H)]  as well as P1 v P2 exists in S(H), and both 
are equal. Indeed, let Pi = w(Ei, Fi), i = 1, 2. Then Pl VA P2 = 7r(El v a E2, 

F1 A F2). But 

E1 VA E2 = (sp(Et tO E2) )  -A = (sp(E1 tO E2))- = E1 v E2 

where --A and - denote the closure with respect to I[" IIA and I1" II, respectively. 
On the other hand, Fl ^Z F2 = F~ f-) F2 = FI/x F2. Therefore, p defined via 
(5.5) is subadditive on any ~a(n) .  

Now assume that p is a state on S(H) which is subadditive on any 
~A(H). If P is an orthogonal projection onto a closed subspace M ~ L(H), 
then P = 7r(M, M • = PM ~ S(H). The restriction of p onto the set ~ ( H )  
of all orthogonal projections on H is a subadditive state on ~ ( H )  [we note 
that if PM, PN E ~(H) ,  then the join of PM and PN in S(H) exists and is 
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equal to PMvN]. By Proposition 5.2 [we can identify M ~ L(H) with PM 
~(H)]  

p(~r(M, M• = dim M/n, M ~ L(H) 

Therefore the restriction of p to ~A(H) is a subadditive state on @A(H), 
so that p is the state in question. �9 

It is worth saying that the former proposition has been proved without 
referring to Gleason's theorem; the extension of  Gleason's theorem to S(H) 
can be found in Mushtari (1989). We recall that (5.5) can be rewritten as 

p(P) = tr(P)/n, P ~ S(H) 

where tr denotes the trace. Indeed, 
ONB {xi}i in E and an ONB {yj}j 

tr(P)/n = ~ (Pxi, 
i 

= dim E/n 

= dim E/n 

= dim EIn 

let P = aT(E, F) ~ S(H) and choose an 
in E • Then 

+ E (Pyj, yj) 
J 

J 

+ [~x/1] (yj, ~r(r • EX)yj) 
J 

In addition, according to Mushtari and Matvejchuk (1985), we can show 
that any state on S(H), 2 :~ dim H < ~, has the form (5.5). We may obtain 
the same result for S(H) when H is an n-dimensional complex Hilbert space, 
n --> 3, without applying Gleason's theorem, from Mushtari and Matvejchuk 
(1985): L e t f b e  a positive bounded linear functional on the set B(H) of all 
bounded operators on H, which is an extension of the state p on S(H) (Yeadon, 
1983, 1984; Christensen, 1982). Due to Petz and Zemfinek (1988, Theorem 
2), the condition sup{f(P): P ~ S(H)} < ~ is equivalent t o f b e i n g  tracial 
on B(H). By Kadison and Ringrose (1986, Example 8.1.2), on B(H) there 
is a unique tracial functional f with f (I)  = 1, namely f(A) = ctr(A), A 
B(H); consequently p(P) = tr(P)/n, P E S(H). 

Remark 5.5. (i) If dim H = 2, then on S(H) there is a unique subadditive 
state, namely p given by (5.5). 

(ii) If dim H -> 3, there is no subadditive state on S(H). 

Proof (i) Checking all possibilities in S(H), we can see that p defined 
by (5.5) is the unique subadditive state on S(H). 

(ii) Take El, E2 E L(H) such that dim E1 = n -- 2, dim E2 = 1, E2 
C El, and let FI, F2 be complements of El and E2, respectively, such that 
(§ 
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Fl n F2 C El v Ez. Then ~(El ,  F 0  v ~r(E2, F2) = I, but dim E1 + dim E2 
< n, which proves that p defined by (5.5) is a state on S(H),  which is not 
subadditive on S(H)  [it is subadditive only on every ~A(H)]. �9 

Theorem 5.6. I f p  is a Jauch-P i ron  state on an O M L  L and p - l ( { l } )  
satisfies the d.c.c., 13 then p has a support. 

Proof  Suppose p has no support. Since 1 is not the support o f  p, there 
exists an al ~ L\{  1 } with p(aO = 1. Since al is not  the support of  p, there 
exists an element az e L with al ~ az and p(a2) = 1. Because o f  al :~ a2, 
we have al ^ a2 < ai. The Jauch-P i ron  property o f p  implies p(al ^ a2) = 
1. Since ax ^ az is not the support of  p, there exists an a 3 ~ L with al ^ a2 

a3 and p(a3) : 1. Because o f  ai ^ az -~ a3, we have a~ ^ a2 ^ a3 < at 
^ a2. The Jauch-P i ron  property o f p  implies p(al ^ a2 ^ a3) = 1. Going on 
in this way, one obtains an infinite strictly descending chain 1 > a~ > a~ ^ 
a2 > al ^ a2 ^ a3 > " '"  in p - l ( {  1 }), contradicting our assumption. Therefore, 
p has a support. I 

Remark 5. 7. Every L(H),  if dim H < ~,  satisfies the d.c.c.; consequently, 
every Jauch-P i ron  state on L(H),  dim H < ~,  has a support; compare  
Proposition 5.2. 

6. O T H E R  S U B A D D I T I V E  STATES 

In this section, we present subadditive states on other OMLs.  First we 
show that if H is a two-dimensional  Hilbert space, then the assertion (iii) o f  
Proposition 5.2 is a particular case o f  the fol lowing result concerning subaddi- 
tive states on horizontal sums of  Boolean algebras. 

Let  (L i, ~i,  • Oi ' li)ie! be a nonvoid system of  OMLs  such that (i) 0 
"= 0i, 1 = :  li for any i e L and (ii) Li n L/ = {0, 1} for any i , j  e I, i 4: 

j.  By L = "ZiEl Li we denote the horizontal sum of  (Li)i~t, where L = Ui~! 
Li. We put a <- b if there exists some i e I such that a, b e L; and a <--i b. 
For all i E I and all a E L i, we put a • : =  a ~i. An  easy calculation shows 
that L together with <--, J-, 0, 1 is a well-defined OML.  

Proposition 6.1. Let L = ~iel Bi be the horizontal sum of  a system of  
Boolean algebras {Bi}i~1, where III > 1 and IBil > 2 for any i e I. Then 
there is a subadditive state on L, say p, if and only if  I B;I = 4 for any i e 
L In this case, p is unique and p(a)  = 1/2 for any a ~ L \{0 ,  1}. 

13We say that a poset P with a partial ordering -< satisfies the descending chain condition 
(d.c.c.) if there do not exist infinitely many elements at, az . . . .  of P with a~ > az > . . . .  
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Proo f  If  I Bil = 4 for any i e I, then it is easy to see that p: L ---) [0, 
1 ] such that p(0) = 0, p(1) = 1, and p(a) = 1/2, a e Lk { 0, 1 }, is a subadditive 
state on L. 

Conversely, let p be a subadditive state on L = E i d  Bi. Suppose there 
is an a eLk{0 ,  1} such that p(a)  < 1/2. Choose  any b �9 Lk{0, 1, a} with 
p(b) <- 1/2. Then p(a v b) = p(1) = 1 > p(a)  + p(b),  which contradicts 
the subadditivity o f  p.  

Since, for arbitrarily fixed i �9 I, p I B i is a state on B; and p(a)  = 1/2 
for any a �9 Bik{O, 1}, f rom the equality a = a ^ b v a ^ b • which holds 
for any b �9 Bi, in particular for any a, b �9 Bik{0, 1, a}, we conclude that 
IBil = 4. �9 

We can obtain another interesting class o f  projections on a Hilbert space 
considering Krein spaces. So let H be a Hilbert space and P any orthogonal  
projection on H. We put J = P - (I  - P)  and define a new inner product  
[ . ,  . ] o n H •  H v i a  

Ix, y ] : =  (Jx, y), x, y �9 H 

Then [ . ,  �9 ] is not necessarily a positive inner product. Denote by F + : =  {x 
�9 H: [x ,x]  = 1 } , F -  : =  {x �9 H: [x ,x]  = - 1 } , F  ~  {x �9 H: [x ,x]  = 

0 }, and H + "= PH, H -  : =  (I - P)H. A vector x �9 H is said to be isotropic 
if x �9 F ~ 

For example, if H = R 2 and dim H + = 1, then F + U F -  consists o f  two 
hyperbolas x 2 - y2 = ___ 1, and F ~ consists o f  two lines y = ---x. If  H = R 3 
and dim H + --- 2, then two rotational hyperboloids x 2 + y2 _ z 2 = +__ 1 form 
F + U F - .  We recall that the case H = R 4 and dim H § = 1 is used as a 
Minkowski  space in special relativity theory. For more information on Krein 
spaces see, e.g., Azizov and Yokhvidov (1986) and on their applications in 
physics see Nagy (1966). 

Denote by Ks(H)  the set of  all idempotent  linear operators P on H such 
that [Px, y] = [x, Py] for all x, y �9 H, or equivalently JP  = P*J.  For two 
elements P, Q �9 Ks (H)  we write P <- Q iff P Q  = QP = P, and put P ' J  : =  
I - P. Then Ks(H)  with respect to -< and / s is an 0 M P  with the least and 
greatest elements 0 and I, respectively. We recall that P •  Q iff P Q  = QP 
= 0 ,  and then P v Q exists in Ks(H)  and P v Q = P + Q. I f P  = I, then 
J = I and Ks (H)  = ~ ( H ) .  

For any subspaces M of  H we put M IJ : =  {x �9 H: [x, y] = 0 for all 
y �9 M}. A subspace M of  H is said to be project ively  complete if M + 
M • = H. It is possible to show that P �9 K s ( H )  iff P = 7r(M, M Is) for 
some projectively complete subspace M; in abbreviation, we write P = -rr(M). 

We note that M is a one-dimensional  projectively complete subspace o f  
H iff P = 7r(sp(x)) = [x, x ] [ ' ,  x]x for some x �9 F + U F - .  In addition, for 
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any subspace M of H we have M tJ = JM • and it is a mirror image of M 
with respect to the axis H +. 

It is possible to show, similarly as for S(H), that if 

"n'(M1) v "rr(M2) = "rr(M) (6.1) 

then Mt v M2 C M, where v is taken in L(H), and if w(Ml) _l_j or(M2), then 
M = Mt v 3/12 = MI + Me. Unfortunately, in general, M1 v M2 ~ M, as 
shown in Example 6.4. 

Example 6.2. Assume dim H = 2. Then Kj(H) is an OML, and any 
subadditive state p on Kj(H) has the form 

p(ax(M)) = dim M/2, 7r(M) e Kj(H) 

Proof. This follows from the fact that Kj(H)  is a horizontal sum of four- 
element Boolean algebras and from Proposition 6.1. m 

An element P ~ Kj(H) is said to be positive (negative) if  [Px, x] > 0 
([Px, x] < 0) for any nonzero x e PH. It is well known (Azizov and Yokhvidov, 
1986, Theorem 6.4) that every element P E Kj(H) can be expressed as 

p = p + + p -  

where P+ and P -  are positive and negative elements of  Kj(H), respectively. 
Equivalently, if P = "rr(M), then 

M = M + + M  - 

where P+ = rr(M +) and P -  = "rr(M-). According to the inertia law (Azizov 
and Yoldavidov, 1986, Theorem 6.5), if P = P~ + P2, where P1 and P2 are 
positive and negative elements of Kj(H), respectively, then 

dim M + = dim M1 and dim M- = dim Me 

whenever M = M1 + M2 and M1 and M2 are positive and negative subspaces 
of H. 

Proposition 6.3. Let 2 <-- dim H = n < ~ and K := min{dim H +, dim 
H -  } ~ 1. Then any of the functions 

pl(rr(M)) = dim M/n, 'rr(M) e Kj(H)  (6.2) 

pz(~(M)) = dim M§ H § w(M) e Kj(H) (6.3) 

p3('rr(M)) = dim M-/dim H-, ~(M) e Kj(H) (6.4) 

defines a state on Kj(H). Consequently, any convex linear combination p = 

)kip 1 + ~k2p 2 + )k3P3, kl, X2)k 3 ---~ 0 ,  )k I "}- ~k 2 n t- )k 3 ~--- 1, of  pl ,  P2, P3 is a state 
on Kj(H), too. 
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Proof I f  P = P+ + P- ~ K~(H) and Q = Q§ + Q- e Kj(H), where 
P§ Q+ and P - ,  Q-  are positive and negative, then 

P r O  = P +  Q = ( P +  Q)+ + ( P +  Q)-  = (P+ + Q+) + (P -  + Q - )  

and P+ + Q+ and P -  + Q -  are positive and negative. Using the inertia law, 
we can prove the assertions of  the proposition. �9 

We recall that (6.2) can be rewritten equivalently as 

Pl(P) = tr(P)/n, P e Kj(H) 

Example 6.4. (i) I f  H = R 3, dim H + = 2, then Kj(H) is a nonmodular 
OML and pl,  P2, P3 are states on Ks(H) which are not subadditive. 

(ii) I f  K = 2, then Kj(H) is not a lattice. 

Proof (i) In this case, the inner product [ . ,  �9 ] has the form [(x, y, z), 
(x, y, z)] = x 2 + y2 _ z 2, (x, y, z) E H. Isotropic vectors lie on cones 
determined by x 2 + y2 = z 2. I f  dim M~ -> 1, dim M2 = 2, then by (6.1) we 
have either "rr(M1) v 7r(M2) = "rr(M2) or ~r(Mt) v 7r(M2) = 7r(H). I f  dim M1 
= dim M2 = 1, Mt v s M2, then Ml + M2 is either projectively complete, 
and then "rr(Ml) v w(M2) = w(M1 + M2), or M1 + M2 is not projectively 
complete, and then 7r(M0 v w(M2) = ~r(H). 

Take a nonzero isotropic vector x ~ H and let Mx be the subspace of 
H generated by x. Then Mx is not projectively complete because Mx (3 
M~J = My. In M~J we can find two independent nonisotropic vectors y and 
z. Then My and M z are projectively complete and, in view of sp(y, z) = 

• 7r(MO v 7r(Mz) "rr(H), which proves thatpl  in (6.2) is not subadditive, M X  ~ + 

consequently Kj(H) is not modular. 
Varying y and z such that both are negative and positive, we see that 

P2 in (6.3) and P3 in (6.4) are not subadditive. We recall that P3 is a 0 - 1 -  
valued state. 

(ii) Choose two linearly independent nonzero isotropic vectors x and y. 
In sp(x, y) we can find two linearly independent nonisotropic vectors u and 
v. Then Mu and My are projectively complete, but "rr(M,) v a'r(Mv) does not 
exist in Kj(H). 

For more information on the extension of Gleason's theorem to Kj(H) 
see Matvejchuk (1989, 1991). 

The assertions of Proposition 5.2 can be generalized. Before that we 
present the following result [for a or-additive variant see Pfftk and Pulmannovfi 
(1991, Theorem 2.3.2)]. 

Lemma 6.5. Let L = L1 • �9 "" • Ln be the product of  OMLs L~ . . . . .  
Ln. Then we have: 
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(i) A real-valued mapping p on L is a state on L if  and only if there 
exist a nonempty subset I C_ { 1 . . . . .  n }, positive numbers cxi > 0, i E I, 
with ~i~t a;  = 1, and states p; on Li for  every i ~ I such that 

p((al  . . . . .  an)) = E otipi(ai), (al . . . . .  an) e L (6.5) 
i E l  

In addition, this representation is unique. 
(ii) On L there is no state if and only if, for every i = 1 . . . . .  n, there 

is no state on Li. 
(iii) A state p on L is subadditive if and only if, for  any i ~ I, the 

corresponding state Pi on Li in (6.5) is subadditive. 
(iv) We have 

IS(L)[ = 0 if Is(zi)l = o 
i=1 

IS(L)[ = 1 if ~ ]S(Li)[ = 1 
i=1 

IS(L) I = 2 ~ ~  ]S(Li)[ if ~ [S(Li)[ > 1 
i= |  i=l 

Proo f  (i) L e t p  be a state on L. Define I :=  {i E {1 . . . . .  n}: p(1 i) > 
0}, where 1 i :=  (al . . . . .  an) with aj = Oi i f j  ~ i and aj = li i f j  = i. Then, 
for  any i E I, the mapping Pi: Li ~ [0, I], defined by pi(a) :=  p(ai)/p(1 i) 
for  all a ~ Li, where a i : (al . . . . .  an) with aj = 0j for  j :~ i and aj = a 
f o r j  = i, is a state on Li. Now (6.5) holds, where o~i = p(l i ) ,  i e L The 
uniqueness of  the representation (6.5) is evident. 

It is clear that (6.5) with given properties on the ai 's, I C { 1 . . . . .  n}, 
and pi, i e L defines a state on L. 

(ii) This follows from (i). 
(iii) If each pg, i e I, is subadditive, by ( 6 . 5 ) p  is subadditive, too. 

Conversely,  l e tp  be subadditive. Then, for  any i e I and all a, b ~ Li, we have 

otipi(a V b) = p(a  i V b i) <~ p(a  i) + p(b  i) = oti(Pi(a ) + pi (b))  

which proves the subadditivity of  p;. 
(iv) Put s :=  ~=1 IS(Li)I. Then IS(L)I = 0, 1, 2 s~ or max( IS(L01 ,  

. . . .  [S(Ln) l), depending on whether  s = 0, s = 1, 1 < s --< n, or s -> 2 ~~ 
respectively. I 

We say that an OML L has finite rank i f  there is an integer k such that 
any set of  mutually orthogonal nonzero elements in L has at most  k elements. 
The least such integer k is said to be the rank of  L. 
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Proposition 6.6. Let L be an irreducible modular  O M L  of  rank n. Then 
on L there is a unique subaddit ive state p, namely  

p(a) = d im a/n, a ~ L (6.6) 

where  dim a is the cardinality of  a maximal  set of  mutual ly  or thogonal  atoms 
less than or equal to a. In addition, 1 is the support  o f  p. 

Proo f  According to Varadarajan (1968, Theorem 2.8), the number  dim 
a does not depend on the chosen maximal  set o f  mutual ly  or thogonal  a toms 
<--a, and (6.6) defines a subaddit ive state on L. 

Conversely,  assume that p is a subaddit ive state on L. I f  p does not have 
the fo rm (6.6), then there is an a E L with p(a) 4= (dim a)/n. Clearly, 0 < 
d im a < n. Let  B and C be maximal  sets o f  mutual ly  or thogonal  a toms less 
than or equal to a and a • respectively. Then there exist two atoms u, v 
B U C such that p(u) < p(v).  Moreover ,  there exists an a tom x of  L with x 
--< u v v, u 4: x :~ v, and p(x)  <- p(u v v)/2. Such a possibil i ty of  finding a 
third a tom x less than u v v fol lows f rom Varadarajan (1968, Theo rem 2.15). 
Then p(u v x) = p(u v v) = p(u) + p(v)  > p(u) + p(x),  contradict ing the 
subaddit ivity of  p. Hence,  p has the form (6.6). 

The fact that 1 is the support  of  p is now evident.  �9 

We note that if  H is an n-dimensional  Hilbert  space, then L(H)  satisfies 
the conditions of  Proposi t ion 6.6; consequently,  any subaddit ive state on 
L(H)  has the form (6.6), or equivalently (2.4) (see Proposi t ion 5.2). 

Remark  6.7. Let  L be a modular  O M L  of  finite rank, and C(L) be its 
center. Since C(L) is o f  finite rank, too, there are finitely many  e lements  ci, 
. . . .  c~ ~ C(L) such that (i) ci ^ c] = 0 for  i 4: j ,  cl v . . .  v Ck = 1; (ii) 
C(L) is precisely the set o f  all a toms of  the fo rm ci~ v . . .  v c; r (1 ----- il . . . . .  
ir <-- k). For every i = 1 . . . . .  k, Li :=  L[0,ci] = {b ~ L: b <- ci} is an O M L  
with respect  to _1_; defined by b • = b • A C; for all b E L i .  Then L is 
i somorphic  to LI X . . .  X L~ [a ~ ( a /x  cl . . . . .  a ^ cD is a corresponding 
isomorphism] and any L i is an irreducible modular  O M L  of  finite rank 
(Varadarajan, 1968, Theorem 2.14). Hence,  for any subaddit ive state p on L, 
there exist by L e m m a  6.5 and Proposit ion 6.6 a nonempty  set I C { 1 . . . . .  
k}, and positive numbers  a i  > O, i ~ I, with ~i~i o/-i = 1, such that 

p(a) = ~ oLi d im(a /x  ci)/dim ci, a E L (6.7) 
i~ l  

Conversely,  any mapp ing  p defined by (6.7) is a subaddit ive state on 
L. Indeed, if a, b E L, using the Fou l i s -Ho l l and  theorem, we have 
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p(a v b) = ~ ai dim((a v b) A ci) /dim ci 
iel 

= ~] c~ i dim((a A ci) v (b ^ ci))/dim ci 
iei 

----- ~ ai  d im(a A ci) /dim ci + ~ ai dim(b A ci) /dim ci 
ieI iel 

= p(a) + p(b) 

In addition, the support of this subadditive state p on L is equal to 

a0 :=  vi~l  ci. Indeed, due to (6.7), for a e L, p(a) = 1 iff dim(a A ci) = 
dim ci for any i e L or, equivalently, a / ,  q = ci for any i e I, hence iff 

a > - a o .  

Proposit ion 6.8. Let L be an irreducible, complete,  atomic 14 O ML satis- 

fying the exchange axiom, ~5 in which there exists an infinite set of  mutual ly  

orthogonal atoms. 
(i) If  p is a subadditive state on L, then p(a)  = 0 for any a �9 L with 

dim a < ~ .  
(ii) There is no subadditive, completely additive state on L. 

Proo f  By Kalmbach (1986, Theorems 8.20, 8.17), there exists a map 

dim: L ~ [0, ~] such that dim 0 = 0, d im a < ~ iff L[o.4 is modular, and 
dim a is equal  to the maximal  number  of mutual ly  orthogonal atoms less 

than or equal to a. 
(i) Let p be a subadditive state on L. We claim p(a)  = 0 whenever  dim 

a < ~.  Indeed, suppose there exists an e �9 L. We claim p(a)  = 0 and p(e)  
> 0. Choose an f �9 L with e < - f  and (dim e)/p(e) < dim f < w. Since all 
atoms in L[0,f ] have dimension equal to 0, L[0,f] is an irreducible (Kalmbach,  
1986, Theorem 10.8), modular  OML of finite rank. Apply ing  Proposit ion 

6.6 to the subadditive state p / p ( f )  on Ll0,f ], one obtains p(e ) /p ( f )  = 
(dim e ) / ( d i m f ) .  But (dim e ) / ( d i m f )  < p(e),  which is absurd, hence p(a) = 
0 whenever  dim a < ~.  

(ii) Suppose that p is a subadditive, completely additive state on L. Let 

{a~ } be a maximal  system of mutual ly  orthogonal atoms in L. Then  1 = 

via i. Hence,  by (i), 1 = p(1) = p(v ia i )  = ~,i p(ai)  = 0, which gives a 
contradiction. [] 

14An element a r 0 of an OML L is said to be an atom of L if b --< a for b e L implies b e 
{0, a}. An OML L is said to be atomic if, for any b e L\{0}, there is an atom a of L with 
a<_b. 

~SWe say that an element y of an OML L covers x e L if x --< y, x r y, and ifx --< z --< y, z 
�9 L, imply z �9 {x, y}. The OML L satisfies the exchange axiom if, for a, b e L, we have: 
If a covers a ^ b, then a v b covers b. 
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7. B O O L E A N  A L G E B R A S  A N D  B E L L - T Y P E  I N E Q U A L I T I E S  O F  
O R D E R  2 

In the present section, we give some conditions characterizing Boolean 
algebras among OMLs via sets of  subadditive states, which in view of  
Theorem 4.1 correspond to states satisfying the Bell inequality (4.1). 

We recall that M4 denotes a lattice with the base set {e, a, b, c, d, f }  
such that e < a, b, c, d --< f and a, b, c, d are mutually different and not 
comparable,  i.e., its Hasse diagram is given by Fig. 2. 

T h e o r e m  7.1.  I f  an O M L  L is not a Boolean algebra, then it contains a 
sublattice isomorphic to M4 containing 0 and a sublattice isomorphic to M4 
containing 1. 

P r o o f .  Let a, b ~ L with a 4, b be given. Put c : =  corn(a, b) < 1 
[(2.3)] and d e f i n e a i : = a ^ c  •  •  z , a 3 : =  b A c  •  • 
AC • Then we have al = a ^ ( a  l v b )  A ( a  • : V U b •  = a • : V D ( a v  
b) A ( a v b •  •  x v b  •  z A ( a v b )  v ( a  • 
v b). Since a ~ b, we have a • < (a x v b) ^ (a • v b z) and hence al =~ 0. 
Similarly we have ai =/= 0 for all i. 

Obviously,  al ^ a2 = 0. Moreover,  

at A a 3 = (a A C • A (b A C • = (a A b) ^ c • 

= ( a ^ b )  A ( a  •  • = 0  

In a similar way  it follows that a i A aj  = 0 for i :~ j. Now al v a2 = a ^ 
c • v a • ^ c • = (a v a •  c • = c • and al v a 3 = a ^ c • v b ^ c • = (a 
v b) ^ c • = c • In a completely analogous way  one obtains ai v aj  = c • 

f o r /  : / : j .  
Since ai ^ aj = 0 for i :/: j and ai --/: 0 for all i, the a i a re  pairwise 

distinct. The existence of  an integer i ~ { 1 . . . . .  4} with a i = c • would 

f 

e 
Fig. 2. 

d 
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imply aj = aj ^ c • = aj ^ ai = 0 for j ~ i, which is a contradiction, too. 
Therefore, c I :~ ai for all i. This shows that {0, al . . . . .  a4, c • } is a sublattice 
of L isomorphic to M4 and containing 0. Clearly {c, a~ . . . . .  a~-, 1 } is a 
sublattice of  L isomorphic to M4 and containing 1. �9 

L e m m a  7.2. Let L be an OML which is not a Boolean algebra and p a 
subadditive state on L. Then there exist A, B C_ L\  {0, 1 } with IAI = I BI = 
4 such that p(a) = p(b) <-- 1/2 for all a, b e A and p(c)  = p(d)  >-- 1/2 for 
all c, d e B. 16 

P r o o f  By Theorem 7.1, there exists a sublattice L~ of L isomorphic to 
M4 and containing 0. Let A denote the four-element antichain of  L1. Then A 
C L\{0,  1} and, for all a, b E A, we have p(a)  = p(a v c) - p(c) = p(b  
v c) = p(b),  where c e A \ { a ,  b}. Moreover, p(a)  = [p(a) + p(b)]/2 = p(a  
v b ) / 2  <- 1/2 f o r a ,  b E A ,  a :~b .  

The second statement follows dually. �9 

Theorem Z3.  Let L be an OML which has a set ~ of  subadditive states 
such that, for every A _ L\{0,  1} with IAI = 4, there exists a p  �9 ~' with 
Ip(A)] > l o Then L is a Boolean algebra. 

P r o o f  I f L  were not a Boolean algebra, then, by Lemma 7.2, there would 
exist an A C L\{0,  1} with IAI = 4 such that Ip(A)l = 1 for all p �9 ~P, 
contradicting our assumption. Hence L is a Boolean algebra. �9 

Theorem 7.4. Let L be an OML which has a set ~ of  subadditive states 
such that, for every A C L\{0, 1} with IAI = 4, there exist a p  �9 ~ and 
an a �9 A with p(a) > 1/2. Then L is a Boolean algebra. 

Proo f  I f L  were not a Boolean algebra, then, by Lemma 7.2, there would 
exist a n A  C_ L\{0,  1} with IAI = 4, such that p(a) <-- 1/2 for a l l p  e ~' 
and all a �9 A, contradicting our assumption. Hence, L is a Boolean algebra. �9 

Theorem 7.5. Let L bean OML which has a set ~ of  subadditive states 
such that, for every A C_ L\{0, 1} with IAI = 4, there exists a p  �9 ~ and 
an a �9 A with p(a) < 1/2. Then L is a Boolean algebra. 

Proo f  This is analogous to the previous proof. �9 

Theorem 7.6. Let L be an OML which has a generating set M and a set 
of  subadditive states with the property that a �9 L, b �9 M, and p(a) <- 

p(b) for all p �9 ~ imply a --- b. Then L is Boolean algebra. 

16One of the authors is grateful to Dr. M. Navara for calling his attention to these facts. 
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P r o o f  Let a, b ~ M. Then, for all p ~ ~ ,  we have 

p(a A (a • v b)) = p(a)  + p(a  i v b) - 1 

= --p(a • + p(a  j-) + p(b)  - p(a  • ^ b) 

<-- p(b)  

whence a A (a • v b) <- b. Since a ^ (a • v b) - a, we conclude a A 
(a I v b) ~ a A b, and therefore a A (a • v b) = a A b. But this is equivalent 
t o a  , - .b .  

Remarks  7.Z (i) Theorem 7.1 follows also from the fact that an OML 
is a Boolean algebra iff it neither contains MO2 nor MO2 • 21 as a subalgebra. 
(This follows from the following results (Beran, 1984, Chapter III.2): (a) 
The free OML F2 of rank 2 is isomorphic to MO2 • 24. (b) The subalgebra 
generated by two noncommuting elements of  an OML must be a nondistribu- 
tive homomorphic image of F2, i.e., it must be isomorphic to MO2 • 2 i for 
some i e {0 . . . . .  4}. (c) MO2 • 2 i is isomorphic to a subalgebra of  MO2 
• 2 / f o r  1 --< i -----j. 

(ii) I f  an OML L has an ordering (Pulmannov~i and Majern~,  1992, 
Theorem 4) or full system of subadditive states, then the conditions of  theorem 
7.3 are fulfilled. 

(iii) Theorem 7.4 generalizes the known result that an OML having a 
unital set of  subadditive states (Pt~k and PulmannovL 1994) is a Boolean 
algebra. 

(iv) Theorem 7.6 generalizes the assertion (Pulmannov~i and Majern~,  
1992, Theorem 4) that an OML having an ordering set of  subadditive states 
has to be a Boolean algebra. 
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